
The Hitchhiker’s Guide to
Building an Encrypted
Filesystem in Rust

BEGINNING: It all started after I began learning Rust
and wanted an interesting learning project to keep me mo-
tivated. Initially, I had some ideas, then consulted Chat-
GPT, which suggested apps like a Todo list :) I pushed it
to more interesting and challenging realms, leading to sugges-
tions like a distributed filesystem, password manager,
proxy, network traffic monitor... Now these all sound
interesting, but maybe some are a bit too complicated for a
learning project, like the distributed filesystem.

IDEA: My project idea originated from having a work
directory with projects information, including some private
data (not credentials, which I keep in Proton Pass. I synced
this directory with Resilio across multiple devices but con-
sidered using Google Drive or Dropbox, but hey, there is
private info in there, not ideal for them to have access to it.
So a solution like encrypted directories, keeping the pri-
vacy, was appealing. So I decided to build one. I thought
to myself this would be a great learning experience after all.
And it was indeed.

From a learning project it evolved into something more and
soon will be releasing stable version with many interesting
features. You can view the project https://github.com/
radumarias/rencfs.

FUSE: I used it before and I could use it to expose the
filesystem to the OS to access it from File Manager and
terminal. I looked for FUSE implementations in Rust and
found fuser, and later migrating to fuse3 which is async. I
began with its examples.

IN-MEMORY-FS: I started wth a simple in-memory
FS using FUSE, where I learned more about smart point-
ers like Box, Rc, RefCell, Arc and lifetimes. Aargh...
lifetimes, would say many, one of the most complicated con-
cept in Rust, after the Borrow-Checker. They are quite
complicated, at first but after you fight them for a while,
you bury the hatchet and are easier to live with. After you
understand how and why the compiler lets you do things,
you understand that’s the correct way to do it and it saves
you from a lot of problems, and you appreciate it. After all,
these are the promises of Rust, memory safety, no data
race and reduces race conditions. And indeed it lives to
its premise. You need to come from other languages where
you had all sort of problems to really appreciate what Rust
is offering you.

STRUCTURE: I started with a simple one that keeps
the files in inode structure, each metadata is stored in inodes
dir in a file with inode’s name and in contents directory we
have files with inode’s name with the actual content of the
file.

MULTI-NODE: We need to run in multi node, as the
folder will be synced over several devices the app could run
in parallel or even offline. We need to generate unique in-
odes for new files. Solution is to assign a instance_id as
a random id to each device (or safer to set by command
arg) and generate as instance_id | inode_seq, where in-
ode_seq is a sequence/counter for each device.

SECURITY: We do the same for nonce, instance_id
| nonce_seq. The sequences we keep in data_dir in a
per instance folder. To resolve problem where user restores
a backup and hence would reuse nonces and reuses inodes
(which ends up in catastrophic failure) we keep sequences

in keyring too and use max(keyring, data_dir). Lim-
its: if the instance_id is u8, the max inode (u64) it’s
reduced to 256 - 3. It’s -3 and not -1 because inode 0 is not
used, and 1 is reserved for root dir, so we’re left with value
72,057,594,037,927,933. And max data to encrypt 256 -
1 * 256 KB, which is 1.845×1019 petabytes.

Using ring for encryption, will extend to RustCrypto
too, which is pure Rust. First time we generate a random
encryption key and encrypt that with another key derived
from user’s password using argon2. We use only AEAD
ciphers, ChaCha20Poly1305 and Aes256Gcm. Creden-
tials are kept in mem with secrecy, mlocked when used,
mprotected when not read and zeroized on drop. Hash-
ing is made with blake3 and rand_chacha for random
numbers.

DATA-PRIVACY: We aim to offer truly privacy and
for that we need to make sure we hide all metadata, con-
tent, file name, file size, *time fields, files count, direc-
tory structure and that all of these are encrypted. File-
name and content are easier to hide, we just encrypt then
and pad filenames to fix size and we’re fine. But files size,
files count, *time fields, directory structure are not trivial.
For that we split the file in chunks and each is like an item
in a LinkedList on disk with next pointer kept encrypted
inside chunk file content. This hides the actual files count,
but to hide it even more we add dummy nodes a the begin-
ning with random data. Also we add dummy random data to
each chunk at the beginning (as it’s easier to skip) so we hide
even more the file size. All these hides file size, files count
and *times fields. This creates a problem, how to get to the
root chunk files (nodes) without an attacker being able to to
the same, given our code is publicly available on GitHub. For
that we keep an index file with all root chunk files (inodes
actually). What’s remaining is directory structure in the
sense of the directories inside another directory. For this we
do similarly, we create dummy folders with random names so
we hide how many actual directories are there and we keep
all these in the index file.

FILE-INTEGRITY: "There’s The Great Wall, and then
there’s this: an okay WAL.". WAL(Write-ahead logging)
is a very common technique used in DBs world for writing
transactions to ensure file integrity. I’m using okaywal.

SEEK: To support fast seeks we encrypt file in blocks
of 256KB. When we need to seek on read we translate
from plaintext offset to ciphertext block_index, and de-
crypt that block. We actually impl Seek on the same Read
struct. For seek on write it’s a bit more complicated, we
need to act as reader too. First we need to decrypt the block
then write to it and when at the end of the block encrypt
the block and write it to disk. Because Rust doesn’t have
method overwriting the code is not as clean as for reader
where, we only extend.

WRITES-IN-PARALLEL: Using RwLock we allow
reading and writing in parallel and we resolve conflicts with
WAL. Particularly useful for torrent apps which writes dif-
ferent chunks in parallel, but also for DBs.

STACK: Fully async upon tokio, fuse3, ring for en-
cryption, argon2 for KDF (deriving key used to encrypt
master encryption key from user’s password), blake3 for
hashing, rand_chacha for random generators, secrets for
keeping pass and encryption keys safe in memory, mlock
on use, mprotect when not read and zeroize on drop. To
mitigate cold boot attack we keep encryption keys in mem-
ory only while being used, and on idle zeroize and drop,
password saved in OS keyring using keyring, tracing.

https://github.com/radumarias/rencfs
https://github.com/radumarias/rencfs

